Iron uptake by the halotolerant alga Dunaliella is mediated by a plasma membrane transferrin.
نویسندگان
چکیده
A 150-kDa transferrin-like protein (Ttf) is associated with the plasma membrane of the halotolerant unicellular alga Dunaliella salina (Fisher, M., Gokhman, I., Pick, U., and Zamir, A. (1997) J. Biol. Chem. 272, 1565-1570). The Ttf level rises with medium salinity or upon iron depletion. Evidence that Ttf is involved in iron uptake by Dunaliella is presented here. Algal iron uptake exhibits characteristics resembling those of animal transferrins: high specificity and affinity for Fe3+ ions, strict dependence on carbonate/bicarbonate ions, and very low activity in acidic pH. Reducing the level of Ttf by mild proteolysis of whole cells is accompanied by lowered uptake activity. Conversely, accumulation of high levels of Ttf is correlated with an enhancement of iron uptake. Kinetically, iron uptake consists of two steps: an energy-independent binding of iron to the cell surface and an energy-dependent internalization. Salinities as high as 3.5 M NaCl do not inhibit iron uptake or decrease the apparent affinity for Fe3+ ions, implying that Ttf activity is not affected by high salt. These results indicate that transferrins, hitherto identified only in animals, are present and function in iron transport also in plant systems.
منابع مشابه
Effects of iron deficiency on iron binding and internalization into acidic vacuoles in Dunaliella salina.
Uptake of iron in the halotolerant alga Dunaliella salina is mediated by a transferrin-like protein (TTf), which binds and internalizes Fe(3+) ions. Recently, we found that iron deficiency induces a large enhancement of iron binding, which is associated with accumulation of three other plasma membrane proteins that associate with TTf. In this study, we characterized the kinetic properties of ir...
متن کاملSalt-induced Changes in the Plasma Membrane Proteome of the Halotolerant Alga Dunaliella salina as Revealed by Blue Native Gel Electrophoresis and Nano-LC-MS/MS Analysis*□S
The halotolerant alga Dunaliella salina is a recognized model photosynthetic organism for studying plant adaptation to high salinity. The adaptation mechanisms involve major changes in the proteome composition associated with energy metabolism and carbon and iron acquisition. To clarify the molecular basis for the remarkable resistance to high salt, we performed a comprehensive proteomics analy...
متن کاملSalt-induced changes in the plasma membrane proteome of the halotolerant alga Dunaliella salina as revealed by blue native gel electrophoresis and nano-LC-MS/MS analysis.
The halotolerant alga Dunaliella salina is a recognized model photosynthetic organism for studying plant adaptation to high salinity. The adaptation mechanisms involve major changes in the proteome composition associated with energy metabolism and carbon and iron acquisition. To clarify the molecular basis for the remarkable resistance to high salt, we performed a comprehensive proteomics analy...
متن کاملHydrolysis of polyphosphates and permeability changes in response to osmotic shocks in cells of the halotolerant alga dunaliella.
The effects of osmotic shocks on polyphosphates and on the vacuolar fluorescent indicator atebrin have been investigated to test whether acidic vacuoles in the halotolerant alga Dunaliella salina have a role in osmoregulation. Upshocks and downshocks induce different patterns of polyphosphate hydrolysis. Upshocks induce rapid formation of new components, tentatively identified as 5 or 6 linear ...
متن کاملUptake of iron from transferrin by isolated rat hepatocytes. A redox-mediated plasma membrane process?
The uptake of iron from transferrin by isolated rat hepatocytes varies in parallel with plasma membrane NADH:ferricyanide oxidoreductase activity, is inhibited by ferricyanide, ferric, and ferrous iron chelators, divalent transition metal cations, and depends on calcium ions. Iron uptake does not depend on endosomal acidification or endocytosis of transferrin. The results are compatible with a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 273 28 شماره
صفحات -
تاریخ انتشار 1998